
3D Graphics with pi3d
Release 1.0

@paddyg

November 02, 2015

CONTENTS

1 Introduction 2
1.1 Target Audience 2
1.2 The Structure and how to use this book 4
1.3 Installation . 5

2 3D Graphics Explanation 6
2.1 Communication between python and the GPU . . . 7
2.2 Sequence of events 9

3 Vectors and Matrices 12
3.1 Vectors . 12
3.2 Matrices . 13
3.3 Illustrations . 14

4 Shapes, Buffers and Display 18
4.1 Shape . 19
4.2 Buffer . 21
4.3 Display . 24

5 Textures, Lights and Shaders 25
5.1 Textures . 25
5.2 Lights . 25
5.3 Shaders . 26
5.4 A Final look at Textures 30

i

6 Cameras, 2D projection and Sprites 32

7 Models 35

8 Constructing a Shape from scratch 38

9 User input and Environment Utilities 44
9.1 Keyboard . 44
9.2 Mouse . 45
9.3 Events . 45
9.4 3D Backgrounds 46
9.5 ElevationMap . 47

10 Lines, Points and Merging 49
10.1 set_line_width and set_point_size 49
10.2 Points using texture mapping 52

11 Strings 54

12 Off-screen textures (and other more complicated things) 57
12.1 Other Shaders . 60
12.2 Video Textures . 60
12.3 Conclusion . 61

ii

3D Graphics with pi3d, Release 1.0

Contents:

CONTENTS 1

CHAPTER

ONE

INTRODUCTION

1.1 Target Audience

It’s not possible to cater for all levels of knowledge and experience in
one book. Inevitably you will find sections where I cover things that
you already know and you can skip ahead quickly, but there will also
be parts that seem difficult where you will have to take it slowly and
check things out on-line (I try to include links where they might be
useful but you can always resort to google!). I assume that:

• You already know how to program (either with python to a ba-
sic level, or with another language to a high enough level that
the switch to python presents few issues). Apart from things
that are non-standard, such as using numpy 1, ctypes 2 or GLSL
3, I shall not explain general programming concepts or syntax.
Also, although I will try to introduce pi3d concepts in a logical
order, this will not necessarily correspond with the sophistica-
tion of the programming techniques used.

• Although not essential it will help if you have a reasonable
(secondary school) understanding of mathematics such as ba-

1 numpy python module for fast array processing http://www.numpy.org/
2 ctypes python module for interacting with imported C libraries

https://docs.python.org/2/library/ctypes.html
3 http://en.wikipedia.org/wiki/OpenGL_Shading_Language

2

http://www.numpy.org/
https://docs.python.org/2/library/ctypes.html
http://en.wikipedia.org/wiki/OpenGL_Shading_Language

3D Graphics with pi3d, Release 1.0

sic trigonometry (sin, cos, tan, arctan 4, Pythagoras 5 etc.) and
have at least come across vectors and matrices 6.

• You have an average understanding of computer images and
display, in so far as they consist of pixels with red, green, blue
values and that some file types (PNG, TIFF etc.) allow trans-
parency per pixel with a fourth, alpha value.

• You want to learn a bit about the mechanisms of producing 3D
graphics rather than simply find recipes for how to do things.

4 https://www.mathsisfun.com/sine-cosine-tangent.html
5 https://www.mathsisfun.com/pythagoras.html
6 http://www.intmath.com/vectors/vectors-intro.php

1.1. Target Audience 3

https://www.mathsisfun.com/sine-cosine-tangent.html
https://www.mathsisfun.com/pythagoras.html
http://www.intmath.com/vectors/vectors-intro.php

3D Graphics with pi3d, Release 1.0

1.2 The Structure and how to use this
book

A book on how to program, or use a module within a language, in-
evitably needs lots of code to look at and run (unless it sets out to
be a very boring book). And code needs lots of comments and ex-
planations because that’s almost the essence of good coding. So it
did occur to me that the whole book could be constructed entirely
from the documentation in the example programs that accompanied
it. However, although this works for generating documentation (as
used for http://pi3d.github.io/html/index.html), it produces too many
constraints and a rather unwieldy book structure. In the end I opted
for this:

1. A narrative and overall explanation starting from the workings
of the GPU and OpenGL, the use of vectors and matrix trans-
formations, simple shapes and shaders through to complicated
projects and games.

2. A set of programs that can be run to illustrate the topics covered
above. Generally the illustrations will use pi3d to create the
graphical output but to start with this will be glossed over as a
distraction from the topic being explained.

3. A selection of the demo programs from
github.com/pi3d/pi3d_demos. As familiarity and under-
standing grow these can become a source of ideas and
boiler-plate code to modify.

4. The source code of pi3d. A key reason to use python is that
it’s easy to read and understand how it works. If something in
pi3d doesn’t do what you expect you are encouraged to open
the source code with an editor and figure out what the problem
is.

5. The on-line documentation. Things like installation instruc-
tions for different platforms, arguments and return values of
class methods, and FAQs belong elsewhere and do not clutter
up this book!

4 Chapter 1. Introduction

http://pi3d.github.io/html/index.html

3D Graphics with pi3d, Release 1.0

The programs are referenced from the narrative and include compre-
hensive docstrings and comments. The code and the docstrings are
NOT duplicated in the narrative so it is essential that the book is
read in conjunction with the programs, and that the programs are read
as well as run.

1.3 Installation

If you don’t have pi3d set up already you need to read the rele-
vant section here http://pi3d.github.io/html/ReadMe.html#setup-on-
the-raspberry-pi and the paragraphs below it, that apply to your plat-
form.

At points in the book I will suggest that you look in various pi3d
files and if you installed on Raspberry Pi or Linux these will be in
/usr/local/lib/python2.7/dist-packages/pi3d/
(or similar), on Windows try C:\Python27\Lib\site-packages\pi3d\.
Obviously python3 would have an appropriately different path.

Also the demos from github.com/pi3d/pi3d_demos (us-
ing git clone or download the zip and extract it), and obvi-
ously you need a copy of the example programs for this book
github.com/paddywwoof/pi3d_book

1.3. Installation 5

http://pi3d.github.io/html/ReadMe.html#setup-on-the-raspberry-pi
http://pi3d.github.io/html/ReadMe.html#setup-on-the-raspberry-pi

CHAPTER

TWO

3D GRAPHICS EXPLANATION

This is a short introduction to 3D graphics from the perspective of
pi3d, there will be gaps and possibly misapprehensions but it should
give you a reasonable feeling for how things work! Also I intention-
ally skip over many of the more involved aspects such as rendering to
off-screen buffers, using masks, etc.

Beneath the python module classes and functions provided by pi3d
there are three “steps” necessary for control of the GPU. Two or three
of these require external libraries (shared objects in linux, dlls in win-
dows) to be imported 1:

1. on the Raspberry Pi libbcm_host.so is used to
create and manage a display surface to draw on. On linux
(desktop and laptop) the surface is provided by the x11
server 2 and windows and Android use pygame (which
uses SDL2 3)

2. libELG is used to set up the interface between the
machine or operating system window system and

3. libGLESv2 provides access to the OpenGL lan-
guage functions developed to standardise utilisation of

1 The attempt to work out on what platform pi3d is running and what libraries
to import is done in /pi3d/constants/__init__.py and the Initialization is done in
/pi3d/utils/DisplayOpenGL.py

2 X11 is the standard windowing and user-input system used on Linux systems
3 Simple DirectMedia Layer https://www.libsdl.org/index.php

6

https://www.libsdl.org/index.php

3D Graphics with pi3d, Release 1.0

graphics cards. Mobile devices, including the Raspberry
pi use a slightly cut-down version called OpenGL ES,
specifically version 2.0.

From OpenGL ESv2.0 onwards the fundamental graphics donkey
work is done by ‘shaders’ that are defined by the developer and com-
piled as the program runs rather than being ‘built into’ the GPU. This
opens up a fantastic range of possibilities but there are some funda-
mental limits that may not be immediately apparent.

2.1 Communication between python and
the GPU

There are two parts to a shader: the vertex shader and the frag-
ment (essentially pixel) shader which are written in a C like language
(GLSL). I will give some more detail to what each actually does later
but one crucial thing to appreciate is that information is passed from
the CPU program (in our case python pi3d ones) to the shaders and the
vertex shader can pass information on to the fragment shader, how-
ever the only output is pixels 4. It is fundamental to the efficiency and
speed of the GPU that the shaders operate on only one vertex or pixel.
i.e. the vertex shader can’t access information about the location of
adjacent vertices and the fragment shader can’t determine the colour,
say, of adjacent pixels. This allows the processing to be run in parallel
(massively parallel, some GPU have thousands of processing cores)
but means that some operation such as blurring or edge detection have
to be done as a double pass process.

Information needed to render the scene is passed to the shader in four
distinct blocks:

1. An ‘element array’ that will be drawn by the call to the
drawElements function. This function can be used to draw
polygons (limited to triangles in OpenGL ES2.0), lines or
points, and the type of drawing will determine how the entries

4 It is possible to get ‘output’ from GPUs using sophisticated techniques that allow
the parallel processing capabilities to be used elsewhere, but this is not trivial!

2.1. Communication between python and the GPU 7

3D Graphics with pi3d, Release 1.0

in the array are interpreted. Essentially each element will con-
tain reference indices to one or more vertices. In the simple
square example below this is the triangle indices array.

2. An ‘attribute array’ of vertex information, again the type
of drawing determining how much information needs to be
passed. For the most general 3D drawing in pi3d the array
contains vertex x,y,z values, normal vectors and texture coor-
dinates.

3. ‘uniform’ variables. This includes things that apply to all the
vertices being drawn, such as the transformation matrix (for
the shape to which the vertices belong), the projection ma-
trix to represent camera location and field of view, the location
and colour of light sources, fog properties, material shades and
transparency, variables to control pattern repeats or for moving
patterns etc.

A very significant part of the uniform variables are images or
texture samplers to ‘clothe’ the object or to provide information
on bumps or reflections.

4. The program for the GPU to run, comprising the vertex and
fragment shader.

In pi3d these four categories of information are held in various ob-
jects: The element and attribute arrays are part of the Buffer and the
Shader class contains the shader programs. However the uniform vari-
ables are held in Buffer, Shape, Camera, Light and Texture objects as
seemed logical and appropriate. General window information, EGL
and OpenGL functionality are held in pi3d globals or the Display ob-
ject.

NB other 3D graphics frameworks pass essentially identical informa-
tion to the GPU but use different terminology. So in threejs there
are: Scene, PerspectiveCamera, WebGLRenderer, Mesh, Geometry,
Material etc.

8 Chapter 2. 3D Graphics Explanation

3D Graphics with pi3d, Release 1.0

2.2 Sequence of events

3D objects are defined for use in graphics programs starting with a
list of points or vertices in space each one needing x, y, z coordinates.
Although not generally essential, in pi3d each vertex has a normal
vector defined as well. This is effectively an arrow at right angles to
the surface at that point and it also needs three values to define its
magnitude in the x, y, z directions. The normal vector can be used by
the shader to work out how light would illuminate a surface or how
reflections would appear. If the normals at each corner of a triangular
face are all pointing in the same direction then the fragment shader
will treat the surface as flat, but if they are in different directions the
surface will appear to blend smoothly from one direction to another.
3D models created in applications such as blender normally have an
option to set faces to look either angular or smoothed by calculating
different types of normal vectors. Each vertex also has two texture
coordinates. These are often termed the u, v position from a two
dimensional texture that is to be mapped to that vertex. Again the
fragment shader can interpolate points on a surface between vertices
and look up what part of a texture to render at each pixel. The crucial
piece of information needed by the shader is to define which vertices
to use for the corners of each triangle or element. So if I use as an
example a very simple one sided square this could be defined by the
attribute array:

""" vertices | normals | texture
| | coords

x y z | x y z | u v
"""
attribute_array = numpy.array(

[[0.0, 0.0, 0.0, 0.0, 0.0,-1.0, 0.0, 0.0], # 0
[0.0, 1.0, 0.0, 0.0, 0.0,-1.0, 0.0, 1.0], # 1
[1.0, 1.0, 0.0, 0.0, 0.0,-1.0, 1.0, 1.0], # 2
[1.0, 0.0, 0.0, 0.0, 0.0,-1.0, 1.0, 0.0]]) # 3

and the element array of triangle indices:

element_array = numpy.array(
[[0, 1, 2],
[0, 2, 3]])

2.2. Sequence of events 9

3D Graphics with pi3d, Release 1.0

Note the order of corners is important. Each triangle ‘faces’ towards
a view where the sequence is clock-wise. Normally the backs of faces
are not rendered by the GPU.

The GPU uses coordinate directions x increases from left to right, y
increases from bottom to top, z increases going into the screen.

The GPU has been designed to be
fantastically efficient at perform-
ing vector and matrix arithmetic.
So rather than the CPU calculating
where the vertices have moved and
how these positions can be repre-
sented on the 2D computer screen it
simply calculates a transformation
matrix to represent this and passes

that to the GPU. In pi3d we pass two matrices, one representing the
object translation, rotation and scale and an additional one including
the camera movement and perspective calculations 5. In the vertex
shader these matrices are used to convert the raw vertex positions to
screen locations and to work out where the light should come from in
order to work out shadows.

Image files are converted into texture arrays that are accessed very
efficiently by the GPU.

When pi3d.Buffer.draw() method is called for a 3D object the python
side of the program sets the shader and necessary uniform variables
to draw the given object. It then works out the 4x4 matrix combin-
ing translation, rotation, scale for the object and an additional matrix
incorporating the camera movement and lens settings. The camera
has two basic modes for handling perspective, the default is ‘normal’
where things further away are represented as smaller on the screen
and the this is defined by a viewing angle between the top edge of the
screen and bottom edge. If the camera is set to orthographic mode
then objects do not get smaller in the distance and one unit of ob-

5 There are actually three 4x4 matrices, the last of which is used for creating a
“distance map” for calculating shadow casting (see the CastShadows.py and Tiger-
Shadow.py demos) Quite a technical procedure.

10 Chapter 2. 3D Graphics Explanation

3D Graphics with pi3d, Release 1.0

ject dimension corresponds to a pixel on the screen. An orthographic
camera can be used to do fast 2D drawing.

The glDrawElements function is then called which sets the vertex
shader to work out the locations of each vertex, normal, lighting, tex-
ture in terms of screen coordinates. The vertex shader then passes
the relevant information to the fragment shader which calculates what
colour and alpha value to use for each pixel. The fragment shader
takes into account the depth value of each pixel and doesn’t draw
anything that is behind something it has already drawn. This means
that it is more efficient to draw opaque objects from near to far but
if something is partially transparent then is must be drawn after any-
thing further away that should ‘show through’.

pi3d uses a double buffer system where everything is drawn onto an
off-screen buffer which, when complete at the end of the frame loop,
is swapped ‘instantaneously’ to visible. This makes the animation
much smoother

2.2. Sequence of events 11

CHAPTER

THREE

VECTORS AND MATRICES

This subject could fill many books so the coverage here will be the
minimum to understand why the information passed to the GPU is in
the form described in the last chapter, how the vectors and matrices
are generated by the pi3d code, and what the GPU does with them. I
would strongly advise you to find out more about vectors by reading
about them elsewhere; they’re great!

3.1 Vectors

The classic definition of a vector is something that has Magnitude
and Direction - a value having only magnitude being termed
scalar. Arrows are often used to represent vectors but, although
this analogue is very easy to understand, it is also a slight distraction
that can make further understanding more difficult. The crucial thing
about vectors is that they have more than one component. So when-
ever a value has to be uniquely defined like (x, y, z) or even (R, G, B)
then that makes it a vector.

So the way a surface “points” (the normal) if often drawn as an ar-
row perpendicular to the surface and this can be easily understood
as a vector (as can the direction of a light “ray” hitting the surface).
However positions of vertices, texture coordinates, movements and
rotations are all vectors as well.

12

3D Graphics with pi3d, Release 1.0

At this point it’s worth thinking a
little about the vector representation
of rotations. A logical approach is
to define the direction of an axis
of rotation using three coordinates
with the amount of rotation depend-
ing on the overall magnitude of the
three values. However if you play
around with a small box (book, mug
etc), pretending it’s the “camera”
used to view a scene, you will see
it’s not so simple. For instance tilting the camera about the horizontal
x axis (running from left to right) through 90 degrees so it’s pointing
straight down, then rotating it about the vertical y axis (in GPU terms)
through 90 degrees would require Euler 1 to figure out about which
axis it had rotated and by how much. What’s more if order of rotation
is y first then x it ends up in a different position. In pi3d a rotation
vector (A, B, C) is interpreted as first rotate C about the z axis (roll),
then rotate A about the x axis (pitch), finally rotate B about the y axis
(yaw) as this produces the most intuitive results!

3.2 Matrices

Matrices are really a short-hand way of holding structured informa-
tion, and from that perspective are indistinguishable from program-
ming arrays:

M = [[1.2, 0.0, 0.0, 1.0],
[0.0, 2.2, 1.5. 1.0],
[0.8, 0.2, 3.2. 0.0],
[0.0, 0.0, 0.0. 1.0]]

However very useful properties have been defined and implemented
in mathematics and subsequently programming languages that enable
efficient and fast calculations involving vectors. And, as we’ve just

1 http://en.wikipedia.org/wiki/Euler_angles#Relationship_to_other_representations

3.2. Matrices 13

http://en.wikipedia.org/wiki/Euler_angles#Relationship_to_other_representations

3D Graphics with pi3d, Release 1.0

seen, vectors are the natural way to represent the components of 3D
graphics.

The essential things to grasp without getting bogged down in the de-
tails are:

1. Matrices can “operate” on vectors resulting in translation (mov-
ing in some direction), scaling or rotation.

2. Matrices can “operate” on other matrices to produce a new ma-
trix with a combined effect. So in pseudo-code:

starting vector v
v = T1(v) # apply translation matrix function to v
v = R1(v) # then rotate it
v = S1(v) # then scale it (etc etc)
v = P1(v) # then to 2D screen coordinates using perspective!
which you could write as
v = P1(S1(R1(T1(v))))
with matrix algebra you can do
M = P1 x T1 x R1 x S1 # termed "matrix multiplication"
M = P1(S1(R1(T1))) # or in our pseudo functional code
v = M(v)

And the reason this is useful is that we can do a relatively small
amount of matrix manipulation in the python program to represent
movement of shapes or the camera and “simply” pass the modified
matrices to the GPU each frame for it to number crunch the actual
pixel values.

3.3 Illustrations

Now is probably a good time to look at the first illustration program
2D_matrix01.py 2 (open a copy in an editor on your computer so you
can run it as well as view it)

The objective is to get an appreciation of how matrices can be used
to modify vectors so, at this stage, don’t worry about how pi3d is
being used to display the output. Display, Camera, Shader, Lines,

2 https://github.com/paddywwoof/pi3d_book/blob/master/programs/2D_matrix01.py

14 Chapter 3. Vectors and Matrices

https://github.com/paddywwoof/pi3d_book/blob/master/programs/2D_matrix01.py

3D Graphics with pi3d, Release 1.0

Keyboard, Font will be covered in later chapters. The whole process
is inevitably complicated-looking as these details are the very thing
that is done “behind the scenes” by pi3d or by the GPU! (Especially
don’t be put off by the very complicated procedure to get numbers to
appear near the corners)

The main bits to look at are where there are docstring explanations.
There are three types of matrix defined which you can modify by
pressing the keys w,a,s,d,z,x,c,v. There is also a printout of the matri-
ces each time you press a key, to fit them in nicely you will probably
have to “stretch” the terminal window to make it wide enough. Spend
a reasonable time figuring out what’s happening before you move on.

In 3D_matrix01.py 3 there is an expansion into three dimensions so
the transformation matrices become 4x4. If you are unclear why this
is necessary it may be a good idea to go back and look at the first
illustration.

Because the computer screen is
essentially flat there has to be a
method of converting the (x, y, z)
vectors of the model into (x, y)
vectors of the screen. The sim-
plest way would be to just ignore
the z values, and this is effectively
what the “orthographic” projection
does (when setting the Camera ob-
ject up in line 10 I set the ar-
gument is_3d=False) For per-
spective projection there has to be
a “scaling down” of x and y coordi-
nates with distance, which is achieved using the matrix p_mat. When
this operates on the vertex a scaling factor is calculated and put into
the fourth “slot” of the resultant vector. In line 67 you will see that in
this manual version the x and y (and z but not needed here) values are
divided by the scaling factor. On the GPU the scaling is done auto-
matically, and this is the reason why the vertex position vectors used

3 https://github.com/paddywwoof/pi3d_book/blob/master/programs/3D_matrix01.py

3.3. Illustrations 15

https://github.com/paddywwoof/pi3d_book/blob/master/programs/3D_matrix01.py

3D Graphics with pi3d, Release 1.0

in the OpenGL shaders are of the form (x, y, z, w) i.e. four
dimensional.

Note also that the perspective modifications to the x and y values are
done after the x, y and z values of the vertices have been recalculated
using the transformation matrices. The scaling is done from a view
point at the origin (0, 0, 0) and this is why the cube has to be displaced
400 units in the z direction to be “within shot”. If we want to modify
the view by moving the camera as well as the objects in the scene (as
in “first person view” games such as minecraft) then this is achieved
by translating and rotating everything else in the opposite sense to
the camera. i.e. in this example if the camera were to move +50 in the
z direction and +50 in the x direction it would be achieved by moving
the cube (-50, 0, -50). These transformations are rolled up into the
camera view matrix that is passed to the GPU.

In pi3d (and 3D graphics generally) the scaling factor is calculated
using a field of view angle, a screen width to height ratio, a
near plane and a far plane. There is a nice interactive demo here
http://webglfundamentals.org/webgl/frustum-diagram.html

3D_matrix02.py 4 switches from doing all the matrix operations
manually to using the standard 3D functionality of pi3d and OpenGL.
Ideally there should be no difference between the behaviour of this
program and the last one apart from the switch to Fortran style matri-
ces mentioned in the docstrings, however it’s much faster though this
will not be apparent with such a simple model! It’s also dropped from
151 to 90 lines of code (excluding comments).

3D_matrix03.py 5 finally uses a pi3d.Cuboid object instead of con-
structing a skeleton from lines. In this program there are two Shaders,
the one passed to the Lines objects (xaxis and yaxis) is “mat_flat” and
the one passed to the Cuboid object (cube) is “mat_light”. The result
is that the sides of the cube behave as if illuminated by a directional
light as it is rotated. The way that the shaders produce the lighting ef-
fect will be covered in a later chapter but now it’s time to move away
from this slightly theoretical background and start to see how the pi3d

4 https://github.com/paddywwoof/pi3d_book/blob/master/programs/3D_matrix02.py
5 https://github.com/paddywwoof/pi3d_book/blob/master/programs/3D_matrix03.py

16 Chapter 3. Vectors and Matrices

http://webglfundamentals.org/webgl/frustum-diagram.html
https://github.com/paddywwoof/pi3d_book/blob/master/programs/3D_matrix02.py
https://github.com/paddywwoof/pi3d_book/blob/master/programs/3D_matrix03.py

3D Graphics with pi3d, Release 1.0

classes fit together and how they can be used in practice.

3.3. Illustrations 17

CHAPTER

FOUR

SHAPES, BUFFERS AND DISPLAY

This is a rather technical chapter with only a few examples and demos,
however it takes a look inside some of the pi3d source code with two-
fold aims: one is to see how the information needed by the shader is
held by pi3d objects and the way it is sent when the draw() method
gets called, the other aim is to get used to opening up the source code
of the module to figure out any problems using it.

In the the pi3d documentation ReadMe there is an ultra minimal ex-
ample:

import pi3d
DISPLAY = pi3d.Display.create()
ball = pi3d.Sphere(z=5.0)
while DISPLAY.loop_running():

ball.draw()

Which seems to be at odds with the requirement that there has to
be a Camera, Light and Shader object in existence to draw any of
the standard Shapes. The answer is that all these classes inherit from
the DefaultInstance class as explained in the Shape.draw() description
below.

If you open pi3d/shape/Sphere.py in an editor you will see that it is
relatively brief. Almost all of the functionality comes from its par-
ent class Shape and this is the case for everything in the pi3d/shape
directory:

18

3D Graphics with pi3d, Release 1.0

Building ElevationMap LodSprite Sphere Tube
Canvas EnvironmentCube MergeShape Sprite
Cone Extrude Model TCone
Cuboid Helix MultiSprite Tetrahedron
Cylinder Lathe Plane Torus
Disk Lines Points Triangle

4.1 Shape

Have a look at the source code for Shape. Don’t be dismayed by how
long it is - the majority of it is just convenience methods for:

1. setting the uniform variables array (self.unif, remember uni-
form variables from chapter two - one of the four categories of data
passed to the GPU shaders),

2. setting the uniform variables held in the Buffer list
(self.buf[0].unib, I will explain the relationship between
Shapes and Buffers below),

3. updating the matrices (see rotateIncY() on line 655, you’ve
already used that method in 3D_matrix02.py and the process of writ-
ing sines and cosines into an array should be reassuringly familiar!)

However the draw() method does several important things. Firstly, on
lines 162 and 38 (which is in __init__() actually!) you will see the
method instance() being called for Camera and Light. These three
classes inherit from the DefaultInstance class and the method will ei-
ther return the first instance of that class that has been created, or if
none, it will create one.

Most of the time the default Light is fine - it’s a neutral directional
light. The default Camera is also what you want for normal 3D view-
ing, but there are occasions when you need to overlay 2D objects in
front of a 3D scene and this can be done by using two Camera in-
stances and assigning each to different objects. The default Shader
is much more of a fall-back position. This is because it has to be a
“material” based Shader rather than one that relies on Textures being

4.1. Shape 19

3D Graphics with pi3d, Release 1.0

loaded. When we look inside the Buffer class you will see why a
default material can be set easily but default textures would be messy.

The second thing to look at in the Shape.draw() method is the section
from line 164 to 202. This is basically the matrix multiplication we
did by hand in 2D_matrix01.py and 3D_matrix01.py Because this has
to be done for every object in the scene in every frame it is time critical
and this has been found to be the fastest combination 1) use numpy
dot() 1 2) set flags everywhere and only do the dot() when something
has moved or rotated.

Before we follow line 207 to the Buffer.draw() we’ll just have a quick
scan through the Shape.unif array which occupies lines 40 to 50 (with
a comprehensive description of what it all is underneath it). The first
twelve values are taken from arguments to the __init__() method and
only offset should need any explanation. This allows objects to be
rotated about different points than their self origin. Fog is a shade and
alpha value that is “merged” by the Shader starting at a third of fog
distance and increasing to 100% fog values at the full fog distance.
Shape alpha allows objects to become partially or completely trans-
parent. The Light values get stored here, in each Shape, even though
there is a separate Light object. This means that it’s possible to illumi-
nate objects within a scene with different lights. Although there looks
to be space for two lights for each Shape all the Shaders (so far) only
calculate illumination on the basis of the first one. Lights will be dis-
cussed in a later chapter but they essentially have a flag to mark them
as “point” or “directional” which determines how the x,y,z vector is
interpetted, an RGB color value for the light and RGB for ambient.
The final eighteen values are available for special shader effects.

N.B. If you are eagle-eyed and have been paying attention you will
have noticed a “proteted” function 2 in Shape, _lathe() that is

1 numpy http://www.numpy.org/ is an important addition to python that can dramat-
ically improve performance. Although it’s quite hard to get the hang of, it’s definitely
worth persisting.

2 python doesn’t have formal name-space control seen in other languages where
attributes and methods are declared public, private, protected etc. However the con-
vention is to use underscores as the first letter to indicate that a method is not intended
for “external” use. Similarly pi3d adopts standard upper case names to denote global
“static” variables.

20 Chapter 4. Shapes, Buffers and Display

http://www.numpy.org/

3D Graphics with pi3d, Release 1.0

used by the majority of the pi3d/shape classes. This method provides
a convenient way of generating objects with rotational symmetry -
though there are modifiers that can produce variations such as spirals
and helices.

4.2 Buffer

This class gets its name because it’s
the object used to hold the attribute
array and element array which are
both created by calling the OpenGL
function glBufferData(). The
reason why it’s a separate class
(rather than just being part of
Shape) is that one Shape can be
constructed from several parts, each
with its own Texture or material
properties. This is particularly true
of Model object i.e. Shapes that
have been designed elsewhere and
saved as obj or egg files.

The Buffer class is also complicated-looking and has more opengles
function calls than Shape. There are a few things worth noting about
this class

1. The “constructor” __init__() takes lists of vertices, normals, texture
coordinates and element indices, as we would expect. However if the
normals argument passed is None it will calculate a set of vectors at
right angles to both the triangle edges that meet at each vertex 3. It
can also be made to construct smaller buffers by being passed empty
lists for the texture coordinate and or the normals when these are not
needed i.e. for Lines, Points or a non-texture-mapped Shape.

2. The draw() method (which is called by Shape.draw() as we saw
above) passes three 4x4 matrices to the shader on line 260 then on line

3 using cross product http://en.wikipedia.org/wiki/Cross_product

4.2. Buffer 21

http://en.wikipedia.org/wiki/Cross_product

3D Graphics with pi3d, Release 1.0

263 passes twenty 3x1 vectors as the Shape.unif array, both of these
being arguments to draw() supplied from Shape.draw(). The attribute
and element arrays are passed to the Shader on lines 271 to 278 and
on line 304 four 3x1 vectors, from Buffer.unib (which I will explain
in more detail below). draw() also passes the Texture samplers from
line 283. NB when I say “pass” the data it is only the pointer to the
data that needs to be transferred, the actual arrays were set up in the
GPU memory space when the Buffer was created and just need to be
switched on (which is very quick). However...

3. There is a re_init() method that can be used to alter the values of
the vertex, normal or texture coordinate vectors from frame to frame.
This requires more processing than simply enabling data that is al-
ready there but it is much faster than scrapping the previous Buffer
object and creating a complete new one.

Moving vertices, normals or texture coordinates isn’t something that
needs to be done very often but it might make an entertaining exercise
in this otherwise fairly wordy chapter. Copy the example program
from the start of this chapter into an editor and make sure it runs
OK (there’s no way of stopping it as it stands apart from Ctrl+C to
break or closing the window). Then add some distortion, straight after
ball.draw() at the same indent along the lines of:

bufr = ball.buf[0] # only one Buffer in the list buf
b = bufr.array_buffer # this is the array buffer!
lenb = len(b) # length of the array (195 actually)
import numpy as np # python will do this just once!
b[:,0:3] *= np.random.uniform(0.99, 1.01, (lenb, 3)) # below..
bufr.re_init(pts=b[:,0:3]) # finally re make the buffer

If you are not used to numpy you will probably be bamboozled by the
fifth line. This is how numpy works: the looping is done “automat-
ically” as a result of the slicing or the shape of the arrays involved.
Using python list comprehension this would achieve the same result:

new_buf = [[b[i,j] * random.uniform(0.99, 1.01)
for j in range(3)] for i in range(lenb)]

bufr.re_init(pts=new_buf)

And good old straightforward, easy to understand looping:

22 Chapter 4. Shapes, Buffers and Display

3D Graphics with pi3d, Release 1.0

new_buf = []
for i in range(lenb):

new_buf.append([])
for j in range(3):

new_buf[i].append(b[i,j] * random.uniform(0.99, 1.01))
bufr.re_init(pts=new_buf)

The reason for this apparent regression to a less obvious code format
is speed. If you test the three alternatives with timeit you will
find that the traditional looping takes 2.2ms, the list comprehension
takes 1.95ms and numpy takes 0.08ms, a massive margin that only
increases as the array gets bigger.

The Buffer.unib array of uniform variable passed to the Shader needs
a bit more explanation than the equivalent array in Shape. ntile is used
to control how many normal map Texture maps (also called bump
maps) are to be tiled for each unit of texture coordinates. Normal
maps will be explained fully in the chapter on Light and Texture but
they are a way of adding structural detail to a surface without hav-
ing to make it from millions of vertices - have a search on google if
you’re curious. shiny controls how much reflection is produced by the
mat_reflect or uv_reflect Shaders. blend is a variable set during the
draw() process depending on whether the Texture values taken from
the image file are to be blended or not. If the alpha value of the pixel
is below this value then the pixel will be “discarded”. This will be
covered in detail later but it allows sharp edges to be produced around
shapes constructed from png images with large areas of transparency.
material is the RGB values for this Buffer when drawn using a ma-
terial Shader. umult and vmult control the tiling of the Texture map
(the color one as opposed to normal or reflection). point_size is the
size in pixels of vertices drawn by the Points object. u_off and v_off
are the tiling offsets that go with vmult and umult. line_width is the
size in pixels drawn by the Lines object.

4.2. Buffer 23

3D Graphics with pi3d, Release 1.0

4.3 Display

Although there could have been a case for making Display create a de-
fault instance of itself in the same way that Camera, Light and Shader
do, there are various reasons why this would be messy, the most ob-
vious of which relate to how the main loop would be structured.

In pi3d we have chosen to make the loop an explicit python while
..: with a call to a central loop_running() used to do vari-
ous once-per-frame tasks, tidy up GPU buffers and close things down
when the program finishes. Many other user interface frameworks
have adopted a more event oriented “hidden” loop style but our rea-
soning was that it only makes sense to use the GPU and OpenGL
where frames per second are of central importance, so in pi3d the
main loop is made very visible.

Open pi3d/Display.py in an editor and look though the docstrings, all
of which should be self-explanatory. There are some more obscure
but occasionally useful arguments to the create() function 4.

4 something not explained very clearly elsewhere is the samples argument to
create() this can be set to 4 and will give much better anti-aliasing i.e. prevent the
stepped edges of diagonals of contrasting color. However using this will prevent pi3d
from creating a Display on computers running windows. This might be because of
the functionality of DirectX and the OpenGL ES emulators for windows (even Linux
virtual machines under windows).

24 Chapter 4. Shapes, Buffers and Display

CHAPTER

FIVE

TEXTURES, LIGHTS AND SHADERS

We’ve touched on the roles of these three classes previously but in
this chapter I hope to give much more detail of how they fit together
and how they can be used.

5.1 Textures

First of all have a look at the next
illustration program textures01.py
1 and run it to see what it does. The
code starts from 3D_matrices03.py
but replaces the yellow material of
the cube with an image texture, the
docstrings explain the changes.

5.2 Lights

Before looking at the next texture
example it would be good to get
more of an idea how Light works;
so open up and run the light01.py

1 https://github.com/paddywwoof/pi3d_book/blob/master/programs/textures01.py

25

https://github.com/paddywwoof/pi3d_book/blob/master/programs/textures01.py

3D Graphics with pi3d, Release 1.0

2 example. Again, much of the ex-
planation that I would have put here is in the docstrings so read them
and try the experiments suggested in the text.

Now work your way through textures02.py 3 which is using all the
functionality available in the “standard” shaders. There are lots of
variables to tweak and experiments to do with this example so work
your way though it slowly and carefully.

5.3 Shaders

In the next illustration we will look at what the shader is doing to
a) look up the texture values for a given pixel b) adjust for lighting.
However the code to get the normal map and reflection map is rather
complicated so I will only give an outline description of that here (if
you want to look at it in detail you will have to read through the shader
yourself!)

Caution the language that shaders use (GLSL) is C-like in syntax,
but that in itself shouldn’t be a problem, the confusing aspect is that
variables can be “different shapes”. Bearing in mind that in GLSL (as
in C) variable types have to be explicitly defined:

float a = 4.12;
vec2 b = vec2(4.12, 5.23);
vec3 c = vec3(4.12, 5.23, 7.34);
a = mod(a, 3.1416); // python equivalent would be a % 3.1416
b = mod(b, 3.1416);
c = mod(c, 3.1416);
b = mod(b, vec2(3.1416, 6.2832);
c = mod(c, vec3(3.1416, 6.2832, 9.4248);

You will see that generally speaking variables can be vectors which
the compiled GLSL is designed to process very fast. On the other
hand branching and conditional statements are very slow and this
sometimes results in strange program structure and use of built in
functions such as step() and clamp().

2 https://github.com/paddywwoof/pi3d_book/blob/master/programs/light01.py
3 https://github.com/paddywwoof/pi3d_book/blob/master/programs/textures02.py

26 Chapter 5. Textures, Lights and Shaders

https://github.com/paddywwoof/pi3d_book/blob/master/programs/light01.py
https://github.com/paddywwoof/pi3d_book/blob/master/programs/textures02.py

3D Graphics with pi3d, Release 1.0

One final bit of explanation before
looking at the next example. The
dot product of two vectors is of-
ten described as “the length of one
times the length of the other times
the cosine of the angle between
them”. This is reasonably easy to
apprehend in two dimensions, and
when we can think of the vectors as
arrows. However in four dimension
when the vectors represent RGBA
values it’s not so intuitive. A better
informal description would be “how much of one vector is in the same
direction as the other” it’s still easy to see how this applies to light il-
luminating a surface but it’s much easier to see that the dot function
doesn’t need to do any (slow) trigonometry, it is sufficient to multiply
the x,y,z components together and this is very fast:

// surface facing in the same direction as x axis
normal = vec3(1.0, 0.0, 0.0);
// light down, from right, out of the screen
light = vec3(-2.5, -2.5, -2.5);
// results in -2.5 # i.e. (1.0 * -2.5) + (0.0 * -2.5) + (0.0 * 2.5)
float a = dot(normal, light);

So now have a look at shader01.py 4 and play around with it. Any
typos or errors in the two shader scripts will be hard to track down so
proceed with caution (remember Ctrl-z can get you back to a work-
ing version!). Also, because the GLSL is embedded in strings in the
python code, the chances are that any code formatting in your editor
will not be brilliant, so here is the code again. Vertex Shader:

1 precision mediump float;
2 attribute vec3 vertex; // these are the array buffer objects
3 attribute vec3 normal; // defined in Buffer
4 attribute vec2 texcoord;
5

6 uniform mat4 modelviewmatrix[2]; // [0] model movement [1] projection
7 uniform vec3 unib[4];

4 https://github.com/paddywwoof/pi3d_book/blob/master/programs/shader01.py

5.3. Shaders 27

https://github.com/paddywwoof/pi3d_book/blob/master/programs/shader01.py

3D Graphics with pi3d, Release 1.0

8 /* umult, vmult => unib[2][0:1] # these are defined in Buffer
9 u_off, v_off => unib[3][0:1] */

10 uniform vec3 unif[20];
11 /* eye position => unif[6][0:3] # defined in Shape
12 light position => unif[8][0:3] */
13

14 varying vec2 texcoordout; // these values set in vertex shader which
15 varying vec3 lightVector; // are picked up in the fragment shader.
16 varying float lightFactor;// However their values "vary" by
17 varying vec3 normout; // interpolating between vertices
18

19 void main(void) {
20 if (unif[7][0] == 1.0) { // a point light; unif[8] is location
21 // apply the model transformation matrix
22 vec4 vPosn = modelviewmatrix[0] * vec4(vertex, 1.0);
23 // to get vector from vertex to the light position
24 lightVector = unif[8] - vec3(vPosn);
25 lightFactor = pow(length(lightVector), -2.0); // inverse square law
26 lightVector = normalize(lightVector); // to unit vector for direction
27 } else {
28 lightVector = normalize(unif[8]) * -1.0; // directional light
29 lightFactor = 1.0; // constant brightness
30 }
31 lightVector.z *= -1.0; // fix r-hand axis
32 // matrix multiplication
33 normout = normalize(vec3(modelviewmatrix[0] * vec4(normal, 1.0)));
34 // offset and mult for texture coords
35 texcoordout = texcoord * unib[2].xy + unib[3].xy;
36 gl_Position = modelviewmatrix[1] * vec4(vertex,1.0);
37 /* gl_Position is a pre-defined variable that has to be set in the
38 vertex shader to define the vertex location in projection space.
39 i.e. x and y are now screen coordinates and z is depth to determine
40 which pixels are rendered in front or discarded. This matrix
41 multiplication used the full projection matrix whereas normout
42 used only the model transformation matrix*/
43 }

and Fragment shader:

1 precision mediump float;
2 uniform sampler2D tex0; // this is the texture object
3 uniform vec3 unib[4];
4 /* blend cutoff => unib[0][2] # defined in Buffer */
5 uniform vec3 unif[20];
6 /* shape alpha => unif[5][2] # defined in Shape
7 light RGB => unif[9][0:3]

28 Chapter 5. Textures, Lights and Shaders

3D Graphics with pi3d, Release 1.0

8 light ambient RGB => unif[10][0:3] */
9

10

11 varying vec3 normout; // as sent from vertex shader
12 varying vec2 texcoordout;
13 varying vec3 lightVector;
14 varying float lightFactor;
15

16 void main(void) {
17 gl_FragColor = texture2D(tex0, texcoordout); /* look up the basic
18 RGBA value from the loaded Texture. This function also takes into
19 account the distance of the pixel and will use lower resolution
20 versions or mipmaps that were generated on creation
21 (unless mipmaps=False was set)
22 gl_FragColor is another of the pre-defined variables, representing
23 the RGBA contribution to this pixel */
24 // try making it a "material" color by swapping with the line above
25 //gl_FragColor = vec4(0.7, 0.1, 0.4, 0.9);
26 // to allow rendering behind the transparent parts of this object:
27 if (gl_FragColor.a < unib[0][2]) discard;
28 // adjustment of colour according to combined normal:
29 float intensity = clamp(dot(lightVector, normout) *
30 lightFactor, 0.0, 1.0);
31 // try removing the 0 to 1 constraint (with point light):
32 //float intensity = dot(lightVector, normout) * lightFactor;
33 // directional lightcol * intensity + ambient lightcol:
34 gl_FragColor.rgb *= (unif[9] * intensity + unif[10]);
35 gl_FragColor.a *= unif[5][2]; // modify alpha with the Shape alpha
36 }

There is a khronos GLSL quick reference card 5 if you want to see
what all the functions do.

I mentioned above that I would give a general description of how the
normal map and reflection map work. If you have attempted to look
at the shader code “really” used in pi3d you will have found that it
is structured with lots of #includes so that common sections can be
re-used - this makes it quite hard to reconstruct. You may have also
seen that the normal vector is not passed from the vertex to fragment
shader as shown in this example. Instead the light vector is rotated
in the vertex shader by a complicated process (Euler angles again) so

5 https://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-
Reference-card.pdf

5.3. Shaders 29

https://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf
https://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-card.pdf

3D Graphics with pi3d, Release 1.0

that it is correctly oriented relative to the normal vector at that vertex
if that vector was pointing straight out of the screen i.e. in the -ve z
direction!

The reason for this complication is that it then allows the fragment
shader to modify the normal vector by simply adding values from the
RGB of a normal map texture. Values of red less than 0.5 make the
x component of the normal negative, greater than 0.5 positive. The
green values control the y component in a similar way.

The reflection map works out the vertical and horizontal angles that a
line drawn from the camera to a given pixel would be reflected. The
reflection uses the normal vector at each pixel adjusted by the normal
map as described above. The reflection angles are then used to look up
a position from a Texture where the horizontal range is -pi to +pi (+/-
180 degrees) and the vertical range is -pi/2 to +pi/2 (+/- 90 degrees)
This is the standard projection used for photo-spheres.

5.4 A Final look at Textures

As a final bit of fun have a look at
the textures03.py 6 demo. This il-
lustrates how Texture objects can be
constructed from numpy arrays (or
PIL Image objects) and can be up-
dated each loop. Although numpy
or PIL are much faster than python
(they are compiled modules writ-
ten in C) they are not as fast as
GPU shaders. However for some
applications it can be very con-
venient to manipulate reasonably
small textures in this way. The

VideoWalk.py demo (on github.com/pi3d/pi3d_demos/) shows how
video frames can be read using ffmpeg and used to update a Texture.

6 https://github.com/paddywwoof/pi3d_book/blob/master/programs/textures03.py

30 Chapter 5. Textures, Lights and Shaders

https://github.com/paddywwoof/pi3d_book/blob/master/programs/textures03.py

3D Graphics with pi3d, Release 1.0

This is also a way to use OpenCV images as Textures as they are
already numpy arrays.

5.4. A Final look at Textures 31

CHAPTER

SIX

CAMERAS, 2D PROJECTION AND
SPRITES

Although pi3d, and OpenGL generally, are aimed at making 3D ren-
dering efficient and fast they allow 2D rendering to be done equally
well. In fact we have already used 2D rendering in the first few ex-
amples in the Vectors and Matrices chapter. In that chapter I mention
in passing that for a 2D or orthographic projection the matrix
multiplication simply needs to preserve the x and y coordinates - no
scaling with distance needs to be done. I also mention that, in pi3d,
this can be achieved by setting the Camera argument is_3d=False.

So this is the general scheme for managing different types of render-
ing in pi3d: Projection matrices are held in Camera objects. When a
Shape is drawn either an explicitly assigned Camera or a default one
will be used and the projection matrix passed to the shader as part of
the uniform modelviewmatrix (as we saw at the end of the last
chapter). Although it’s possible to have as many different Cameras as
you want it’s normally sufficient to have just one 3D for rendering
3D objects that possibly moves around the virtual environment under
user control, and one 2D that remains fixed and allows “dashboard”
information to be displayed.

Have a look at the two demo programs Minimal.py and Mini-
mal_2d.py from https://github.com/pi3d/pi3d_demos There are a cou-
ple of noteworthy differences between 3D and 2D projections:

32

https://github.com/pi3d/pi3d_demos

3D Graphics with pi3d, Release 1.0

Scale In 3D projection (with the default lens settings) 1.0
unit of x or y at a z distance of 1.1 just about fills the
screen (in the vertical direction; the field of view
is defined vertically). Try adding variations of this line
after the DISPLAY creation in Minimal.py:

CAMERA = pi3d.Camera(lens=(1.0, # near plane
1000.0, # far plane
25, # field of view
DISPLAY.width / float(DISPLAY.height)))

In 2D projections 1.0 unit of x or y equates to 1 pixel

z distance In 2D projections the effective distance of ob-
jects (to determine what gets drawn in front of what) is:

10000 / (10000 - z_2D)

So if you set a 2D object at z=20.0 it will be drawn in
front of a 3D object at z=1.002 (effectively in front of
all 3D objects). To draw a 2D object behind a 3D ob-
ject at z=20.0 it must be moved to z=9500.0 However the
relative positions of 2D objects with respect to each other
work as you would expect so a 2D object drawn at z=20.0
is in front of a 2D object at z=21.0

In Minimal_2d.py try changing rotateIncZ to rotateIncX (or Y). Do
you see the effect of moving some of the object in front of the near
plane? To keep it in view you need to move it further away. In the
following line sprite.position() increase the z value from 5.0
to 50.0.

Open the demo file Blur.py. This has various features I haven’t ex-
plained yet: MergeShape, Defocus, Font and String. You can prob-
ably figure how they’re being used but don’t worry about that at the
moment. Just look at lines 78 and 79 where the String is defined. You
will see that it uses a 2D camera, try increasing the z value. The text
will only coincide with the balls when you increase z above 8000

The most common way to use the 2d Camera is with the Sprite class
which maps a rectangular Texture to a quad formed by two triangles.

33

3D Graphics with pi3d, Release 1.0

The Minimal_2d.py demo above shows the basic use via the Image-
Sprite class which wraps up the Texture loading and Shader alloca-
tion. Have a look at sprites01.py 1 which shows why the order of
drawing objects matters for blending.

The Sprite class in pi3d is an easy way to do 2D rendering of images,
however it runs into processing limitations if it is used for sprites in
the sense of a 2D animation or game. Where there are hundreds or
thousands of images moving about (think “creeps + towers + mis-
siles” in a tower defence game) then it is more efficient to use the
OpenGL point drawing functionality which will be touched on in the
chapter Lines and Points and demonstrated in SpriteBalls.py
and SpriteMulti.py

1 https://github.com/paddywwoof/pi3d_book/blob/master/programs/sprites01.py

34 Chapter 6. Cameras, 2D projection and Sprites

https://github.com/paddywwoof/pi3d_book/blob/master/programs/sprites01.py

CHAPTER

SEVEN

MODELS

3D models can be made and edited using a wide variety of software
and saved in nearly as large a variety of formats. In pi3d, at the mo-
ment, there are just two file types that can be parsed: wavefront obj
and Panda3D egg. Of these two the obj is simpler and faster to load.

Figure 7.1: Blender screen-capture

If you have blender 1 installed on your PC then you can open the

1 http://www.blender.org/

35

http://www.blender.org/

3D Graphics with pi3d, Release 1.0

file model01.blend 2 or you can view it by running the pi3d demo
model01.py 3 It’s basically a box with horns! In the diagram above
the left view is normal perspective (as with pi3d) and the right view is
the uv “unwrapping” for texture mapping to the vertices.

Open the blender01.obj and blender01.mtl files and have a look at
the structure of the information, it should be reasonably familiar by
now with a little explanation.

Most of the obj file consists of four types of lines:

v vertex lines with x, y, z coordinates.

vt vertex texture lines with u, v coordinates.

vn vertex normal lines with x, y, z components of nor-
mals.

f face lines with a series of references to v/vt/vn lines for
each corner of the face. In general there could be more
than three corners and the parser function has to convert
it into triangles to work with OpenGL ES2.0

Additional occasional lines are mtllib model01.mtl which points to
material file. o Cube define different objects within this file. In pi3d
these will each be a different Buffer object within one Shape. usemtl
Material instructs the properties from mtllib under “Material” to be
used for the following faces. s off and s 1 turn smoothing off and on.
Pi3d doesn’t use these instruction but does use the normals. If you
look at the lines:

s off
f 3/1/1 2/2/1 9/3/1 7/4/1
f 13/5/2 14/6/2 9/7/2 2/8/2
f 3/9/3 7/10/3 8/11/3

You will see three faces using vertices (4,2,9,7) (13,14,9,2) (3,7,8)
with normals (1,1,1,1) (2,2,2,2) (3,3,3) i.e. all corners are facing the
same direction. NB the parser will convert each of the first two quads
into triangles. Later on:

2 https://github.com/paddywwoof/pi3d_book/blob/master/programs/model01.blend
3 https://github.com/paddywwoof/pi3d_book/blob/master/programs/model01.py

36 Chapter 7. Models

https://github.com/paddywwoof/pi3d_book/blob/master/programs/model01.blend
https://github.com/paddywwoof/pi3d_book/blob/master/programs/model01.py

3D Graphics with pi3d, Release 1.0

s 1
f 17/42/15 16/41/16 24/62/17 25/63/18
f 15/46/19 22/49/20 30/64/21 23/65/22
f 30/66/21 22/15/20 17/14/15 25/67/18

faces (17,16,24,25) (15,22,30,23) (30,22,17,25) have normals
(15,16,17,18) (19,20,21,22) (21,20,15,18) i.e. not a flat face. And
you will see that the same vertex used in different faces (i.e. vertex
#17 or #25 above) has the same normal vector (#15 or #18)

In the mtl file you will see that there is a newmtl Material to match
the usemtl line in the obj file, followed by lines specifying material
properties (Ns specular exponent, Ka ambient, Kd diffuse, Ks specu-
lar (RGB values), d alpha, illum illumination model, map_kd a file to
use for diffuse values) Pi3d only picks up the Kd and map_kd to use
as material and Texture.

37

CHAPTER

EIGHT

CONSTRUCTING A SHAPE FROM
SCRATCH

Hopefully you’ve got enough idea about the way that vertices, nor-
mals, texture coordinates and faces fit together now to have a go at
creating something from scratch. This isn’t the way that pi3d is nor-
mally used - there are plenty of “standard” shapes, as well as the abil-
ity to import 3D models, but this exercise should be a valuable aid
to understanding what the capabilities are and how to get round any
limitations you might find.

The scope is intentionally ambitious: A procedurally generated city
with two different building types with variable, realistic surface tex-
tures. Obviously I’ve spent a bit of time thinking about it but this
approach certainly isn’t the only way, or even the best, but this is the
logic I follow in this example:

1. A function to construct a simple house given the position of its
four corners. The house will be similar to the Cuboid but it will have
a pitched roof (replacing two triangles with six and two extra vertices)
and it doesn’t need a bottom.

2. A function to construct a simple office block given the four corners.
This will be essentially the same structure as for house but the roof
will be nearly flat and the texture mapping will be modified so that a
tall building will have more floors. This could be done using umult or
vmult to make the image repeat up the side of the building, however

38

3D Graphics with pi3d, Release 1.0

by using different parts of an image it will be possible to distinguish
the ground floor from upper levels.

3. A function to generate roadside paving given the corners of a block

4. An algorithm that can be given N corners of a polygonal block and
partition it into appropriately sized buildings. This algorithm should
be able to generate a range of building sizes and types in a controllable
way.

5. An algorithm to generate a pattern of city blocks.

Before getting stuck into con-
struct01.py 1 It’s worth explain-
ing a couple of things. First the
class definition City is very simi-
lar to most of the “standard” pi3d
shapes defined in the pi3d/shape di-
rectory. It inherits from Shape and
calls Shape.__init__(). It also cre-
ates arrays of vertices, normals, tex-
ture coordinates and faces and uses
them to create a new Buffer object
that is appended to the Shape.buf
list. However the creation of the
Buffer is done via a different method City.make_houses() which is
provided with a lists of “specs” each containing four tuples for the
coordinates of the corners and a height.

An additional difference from previous examples has been introduced
here. Rather than rotating the Shape, the a,d,r,f keys rotate and tilt
the Camera object. In addition the w and s keys move the Camera
forwards and backwards. The x and z movements can be calculated
using simple trigonometry, and this is the approached used in many
of the demos in pi3d_demos, however they correspond with the val-
ues already worked out for the Camera transformation matrix so it is
more processor-friendly to simply re-use the figures as is done here.
Work your way though the example and try to convince yourself that

1 https://github.com/paddywwoof/pi3d_book/blob/master/programs/construct01.py

39

https://github.com/paddywwoof/pi3d_book/blob/master/programs/construct01.py

3D Graphics with pi3d, Release 1.0

you understand how the vertices, normals, texture coordinates and
faces are constructed. Remember that the order of vertices in a tri-
angle determines which is the front, there is also a similar (and not
unrelated) quirk when calculating normal directions using the cross
product of two edges, namely cross(A,B) points the opposite direc-
tion to cross(B,A).

In construc02.py 2 most of the
functionality of make_houses has
been transferred to a private method
_make_buildings (denoted by the _
prefix, as mentioned in the intro-
duction, this is purely a convention
to make the code easier to read,
python ignores it!). This method
takes two additional arguments: 1.
the height of the eaves compared
with the top of the pitch - i.e. how
flat the roof will be 2. the whole of
the tex_coords array which is quite

different for offices, being a long image used for all four sides, rather
than the image divided into six used for houses. There is also an addi-
tional factor added to the spec for each house or office that determines
how much of the texture to use in the uv map. If you play around with
the spec values in the example program you may be able to get a feel
for how this manipulation of uv values is being used.

The next illustration construct03.py 3 adds the nearly-flat raised areas
to represent the sidewalks of each block. The code to generate these
shapes is almost a re-run of houses and offices apart from the need
to have different polygons to allow triangular and pentagonal blocks,
also because the side surfaces are so small, a simplification has been
allowed to do without a set of vertices around the edge of curb. This
means that the normal direction can’t be differentiated at this edge but
it’s not really big enough to see anyway.

The code to “populate” a block with offices and houses is one of the

2 https://github.com/paddywwoof/pi3d_book/blob/master/programs/construct02.py
3 https://github.com/paddywwoof/pi3d_book/blob/master/programs/construct03.py

40 Chapter 8. Constructing a Shape from scratch

https://github.com/paddywwoof/pi3d_book/blob/master/programs/construct02.py
https://github.com/paddywwoof/pi3d_book/blob/master/programs/construct03.py

3D Graphics with pi3d, Release 1.0

trickier aspects of this procedural generation exercise. It’s not purely
graphics related but if you’re interested in the process this is the logic:

For each side of the block calculate how many buildings
should be added. Then make a list of points that will
mark the street-facing corners of the buildings. For the
corner buildings work out the fourth corner by seeing
where two lines running in from the front corners in-
tercept. For the intermediate buildings calculate the re-
quired other two (inside) points.

There’s a little bit of algebra in-
volved, but it’s essentially just stuff
you will have learned when you
were 13 or 14: simultaneous equa-
tions and the fact that the gradi-
ent of a line is minus one over
the gradient of its perpendicular.
The demo construct04.py 4 differs
from previous ones in that it is es-
sentially a big function for generat-
ing a list of office and house specs
from a polygon representing a city
block. For this reason there is a if
__name__ == "__main__": section at the bottom that will be
executed if you run this file but will be ignored when the file is im-
ported into something else. The bottom section draws out the gener-
ated block and saves it as a file “temp.png” - useful while developing
the code and tweaking settings. In the next demo you may notice that
there are some deficiencies caused by the allocation of corner build-
ings followed by in-filling the other edge buildings: namely there is
sometimes an overlap and sometimes a gap. A better approach would
be to allocate the buildings from corner to corner and scale the whole
lot to fit.

In the final demo construct05.py 5 a list of blocks is used to generate
the specs. Ideally this would be done using a clever algorithm but

4 https://github.com/paddywwoof/pi3d_book/blob/master/programs/construct04.py
5 https://github.com/paddywwoof/pi3d_book/blob/master/programs/construct05.py

41

https://github.com/paddywwoof/pi3d_book/blob/master/programs/construct04.py
https://github.com/paddywwoof/pi3d_book/blob/master/programs/construct05.py

3D Graphics with pi3d, Release 1.0

that could take a whole book on its own! There is also a simple plane
to provide the road surface and “fog” has been added to the city ob-
ject. You may remember fog when you looked inside the Shape class,
it’s held in the unif array and is used by the shader to fade colours
of objects in the distance. As the calculation is done in the vertex
shader it doesn’t work well for large surfaces with few vertices, like
the ground plane. If you try adding a similar fog to that you will find
that the effect is strongest when you are in the middle - the maximum
distance from all the vertices! One option would be to do the distance
calculation in the fragment shader, but that would slow it down, the
alternative approach would be to subdivide the ground surface and
this is one of the benefits of using the ElevationMap class that will be
covered later.

One last new feature has been added to this demo that will be ex-
plained more fully in the next chapter - mouse camera control. As you
will have found, the keyboard control of the camera is very “clunky”
compared with mouse movement. With mouse steering you can fly
forwards and backwards using w and s keys. You will also see one of
the problems that the ElevationMap helps to prevent - going through
the ground surface!

There are various ways that the city could be improved: procedural
street layout, more varieties of building, better image textures, more
structure to the models, normal maps to give more close-up detail,

42 Chapter 8. Constructing a Shape from scratch

3D Graphics with pi3d, Release 1.0

reflections from windows.. The scope is almost limitless but hopefully
you now have some idea how to approach and implement some of the
more sophisticated aspects of 3D modelling.

43

CHAPTER

NINE

USER INPUT AND ENVIRONMENT
UTILITIES

9.1 Keyboard

Keyboard input has been used in all the demo programs without any
real explanation so you’ve probably got a good idea how to use it but
it might be worth explaining a little more about how it works.

One aspect of python that peo-
ple often find strange is the ab-
sence of non-blocking key input
as a “built-in” function. The rea-
sons is almost certainly because of
the desire to make python appli-
cations run unaltered on all plat-
forms. In pi3d we have to pro-
vide a host of different options for
keyboard input: CursesKeyboard,
SysKeyboard, x11Keyboard, An-
droidKeyboard (which is really just
a placeholder) and PygameKey-

board. Normally the appropriate one will be loaded for the environ-
ment you are using but this is a surprisingly non-straightforward area
that may need some careful thought especially on non-standard plat-
forms or using non-standard keyboards or even simply trying to use

44

3D Graphics with pi3d, Release 1.0

keys that map to variable key-codes.

9.2 Mouse

The Mouse class operates in a similar fashion to the Keyboard to some
extent, but the default linux (and Raspberry Pi) mechanism reads
events directly from the operating system. The disadvantage of this
is that the programs have to be launched with root privileges ($ sudo
...). The advantage is that the mouse movements continue to provide
input even when the cursor is outside the relevant window or even
“stuck” against a screen edge. This means that it’s possible to click
on other things on the desktop, including the X to close the pi3d win-
dow, if needed! To achieve the same effect with the pygame mouse
input (as used with Windows but available on linux (except Raspberry
Pi) by using Display.create(use_pygame=True)), the cur-
sor is “warped” to the centre of the window each frame and hidden.
There are slight differences in the behaviour of Mouse functions with
the two systems but most of the demos simply use position()

Mouse.position() returns a tuple (x, y) this can be constrained by
passing Mouse constructor an argument restrict=True (the default),
in which case values can also be set for the width and height to which
the mouse movement is restricted.

Mouse.velocity() returns a tuple (dx, dy) which is either the distance
since the last movement or since the last call of position or velocity.

Mouse.button_status() returns either Mouse.LEFT_BUTTON,
RIGHT_BUTTON, MIDDLE_BUTTON or BUTTON_UP but varies
a little in behaviour from platform to platform.

9.3 Events

The InputEvents class provides a very flexible method for virtally any
kind of input, not just mouse and keyboard but also joysticks and

9.2. Mouse 45

3D Graphics with pi3d, Release 1.0

game controllers. However it becomes tricky to set up on linux com-
puters with variable input devices such as laptops with touch-pads and
doesn’t work on Windows at all. In pi3d_demos the Silo.py demo uses
this mechanism so checking out that demo would be a good place to
start if you need to use this flexibility.

9.4 3D Backgrounds

In pi3d the background scenery is provided by either the Environ-
mentCube or EnvironmentSphere classes. These are basically cubes
or spheres where the triangles are defined so that they face inwards
(remember the order of vertices determines which way a surface faces
in OpenGL). However the Texture used to wrap onto the inside of the
shape has to conform to the perspective required to not distort the
scene or make the seams show.

The EnvironmentSphere is simplest in this regard, using an equirect-
angular projection in which top to bottom of the image is 180 degrees
and left to right of the image is 360 degrees. If you have a modern
phone you can probably get an app to take your own “photosphere”
pictures, otherwise you can download them from various places on
the internet. see 1

The projection for the EnvironmentCube is trickier to produce without
specialist software. There is a facility in blender to do the conversion
and there are some instructions on the FAQ 2

Play around with the two demo programs mentioned above, trying the
different cube layouts. Look at the image files used for each version.
Notice also that the EnvironmentSphere demo uses the same image
for the reflection as the inside of the sphere and that the orientation of
the reflection correctly matches the environment - i.e. mirror image.

1 sphere http://pi3d.github.io/html/FAQ.html#sphere
2 cube http://pi3d.github.io/html/FAQ.html#cube

46 Chapter 9. User input and Environment Utilities

http://pi3d.github.io/html/FAQ.html#sphere
http://pi3d.github.io/html/FAQ.html#cube

3D Graphics with pi3d, Release 1.0

It is important, when using a cube or sphere to represent the distant
background, to move it around as the camera moves. You will see that
most of the demos do this but not the BuckfastAbbey one. If you run
that demo and head out towards one of the corners you will be able to
see what happens if a) the opposite corner starts to move beyond the
far plane b) the camera moves outside the box.

9.5 ElevationMap

At the end of the last chapter I touched on some of the problems
caused by representing the ground as a large horizontal quadrilateral
(pi3d.Sprite). The ElevationMap class is used in quite a few of the
demos to solve these issues, open the ForestWalk.py demo and have a
look at the relevant code. There are various things worth noting:

1. The number of “facets” that the ground is divided into is defined by
the constructor arguments divx and divy. The elevation is defined by a
combination of height argument and a grayscale image, white pixels
being taken as full height and black pixels as zero height. Notice
that the number of vertices needed when dividing a grid into 32x32 is
33x33 so if you need exact heights to be read from the image you need
to make the image one more pixel than divx and divy and you need to
use a lossless compression format such as png. In the ForestWalk.py
demo the surface has been made tileable by making the left and right,

9.5. ElevationMap 47

3D Graphics with pi3d, Release 1.0

and top and bottom, pixels identical - see the mechanism for “tiling”
in lines 125-134 and 183-185.

2. There are several useful
methods in ElevationMap includ-
ing calcHeight() used here, but also
clashTest() that checks if a sphere
would intersect with the surface and
return the normal vector at that
point (see the Pong.py demo) and
pitch_roll() that returns the X and Z
rotations to apply to a shape in or-
der for it to lie parallel with the sur-
face at a given point (see the Tiger-
Tank.py demo)

48 Chapter 9. User input and Environment Utilities

CHAPTER

TEN

LINES, POINTS AND MERGING

In the chapter introducing 3D graphics I described the process
of setting up the “attribute array” of vertex information and the
“element array” essentially specifying how the vertices define
the triangular faces. I then passed quickly over the details of
how the OpenGL function glDrawElements() is called to draw
the shape. In actual fact this function needs to be told what
kind of elements to draw, not just GL_TRIANGLES but also
GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES,
GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN work, each of
which interpret the element array differently.

In pi3d.Shape there are two methods that allow switching between
triangles (the default) and points or lines.

10.1 set_line_width and set_point_size

Have a look at the source code of pi3d/Shape.py around line 420
and you will see that it is a relatively simple process of calling the
OpenGL function glLineWidth() and changing the Buffer property
draw_method. If the argument closed is set to True then the
line will loop from the last point back to the first, If the width is set to
zero then the draw_method will revert to triangles. The set_point_size
method above it is slightly simpler as there is no OpenGL function to

49

3D Graphics with pi3d, Release 1.0

set a global point size, rather the size is passed to the vertex shader as
a uniform variable Buffer.unib[8]. This is then scaled with distance so
that a point is the size specified at one unit distance from the camera,
half at two units, third at three units etc. (Have a look at any of the
standard vertex shaders to see how this is done). Lines are always the
same width however near or far away.

Now open linepoint01.py 1 and try toggling between triangles, lines
and points using the t, l and p keys. Check out the effect of using a flat
shader or lighting dependent shader and the related effect of using uv
texture mapped shader. Try the pi3d.Lines object; one thing you will
find with this is that only the mat_flat shader works as expected. This
is because the Buffer attribute array doesn’t have normals or texture
coordiates. There is also a pi3d.Points class which is very similar.

You might also notice with many
of the standard shapes drawn as
lines with the “strip” argument to
set_line_width set True, that though
the majority of the lines define
quadrilaterals there are some quads
that have an additional diagonal
line. In fact, it might seem logical
for all the diagonals to show, after

all, that’s how the triangles are represented when the 3D shapes are
drawn as solid objects. However if the order of vertices used in the
element buffer is defined carefully the line drawing can be made to
(mainly) follow the edges. In the diagram, for instance, the triangles
are defined as [(0, 1, 2), (2, 3, 0)] which when used to
define a line is interpetted as 0=>1 1=>2 2=>2 2=>3 3=>0 i.e. going
round the outside. In earlier versions of pi3d the triangles may have
been defined as [(0, 1, 2), (0, 2, 3)] which would have
produced a line with the diagonal drawn twice and the edge from
3=>0 missing!

In the above example the line drawing is what would happen using
GL_LINE_STRIP which is the default behaviour of set_line_width.
If the argument “strip=False” is used then the draw method is

1 https://github.com/paddywwoof/pi3d_book/blob/master/programs/linepoint01.py

50 Chapter 10. Lines, Points and Merging

https://github.com/paddywwoof/pi3d_book/blob/master/programs/linepoint01.py

3D Graphics with pi3d, Release 1.0

GL_LINES and this interprets the elements as a series of pairs defin-
ing each end of a series of lines. The result would then be 0=>1 2=>2
3=>0 i.e. only the first and last edge would be drawn, which you will
have seen when you tried the experiments suggested in linepoint01.py.
Generally the edges will be drawn more completely using the default
“strip=True” however for standard shapes created with Shape.lathe()
(i.e. most of them!) the faces fit together to fill in the gaps. Also
for models loaded from obj files there is a tendency for extra edges
to appear joining the scattered faces and these often look better using
“strip=False”.

It might occasionally be nice to be able to draw a 3D object as a solid,
with directional lighting then overlay lines defining the edges of its
faces. However there are two problems with this: 1. As we have seen
in the linepoint01.py example we would need two shaders to do it
nicely 2. The lines will be exactly the same distance from the camera
as the edges of the faces they outline so there is likely to be z-fighting
2 or partial obscuring of lines as the object rotates.

There are at least three ways
of tackling this problem. One
might be to make a Shape with
two Buffers, the first using
GL_TRIANGLES with mat_light
shader, the second Buffer being
a duplicate of the first but using
GL_LINES and mat_flat shader.
Ideally the second Buffer would
be scaled up slightly so the lines
were always drawn outside the
solid version. As scaling can be
more easily done for a whole Shape
it might be easier to achieve the same result by using two Shapes,
rather than Buffers with the second Shape a child of the first one.
(Look at the TigerTank.py demo to see how child objects can be
used to conveniently join Shapes together but allow them to be

2 https://en.wikipedia.org/wiki/Z-fighting

10.1. set_line_width and set_point_size 51

https://en.wikipedia.org/wiki/Z-fighting

3D Graphics with pi3d, Release 1.0

moved relative to each other). In linepoint02.py 3 I use a technique
of drawing the object twice each frame, once as a solid then as a
wireframe. I use the Camera transformation matrix to move the shape
slightly towards the view point between each draw. 4

The third example in this chapter linepoint03.py 5 introduces the
pi3d.MergeShape class. This class can be used to combine several
Shape objects into one with the advantage that only one draw() call
will then be needed. For a large number of objects, such as the trees in
the ForestWalk.py demo, this will make a very significant reduction
in the (slow) python side matrix multiplication. As well as merge()
used here, MergeShape has two other methods: radialCopy() which
can be used to produce regular patterns (see pi3d_demos/Blur.py) and
cluster() which is used to “scatter” objects randomly onto an Eleva-
tionMap, (see pi3d_demos/ForestWalk.py).

10.2 Points using texture mapping

Finally, in the chapter on ‘Cam-
eras, 2D projection and Sprites’
I referred to an alternative sprite
drawing method using points,
for fast rendering when the num-
bers get big. Open up the demo
pi3d_demos/SpriteBalls.py There
are several features of this demo
that use numpy to do the bounce
and movement calculations on
large arrays of vertices, I won’t

attempt to explain any of that here but I do recommend trying
to get to grips with this in the longer term. For the moment it
is sufficient to understand that the sprites are represented by the

3 https://github.com/paddywwoof/pi3d_book/blob/master/programs/linepoint02.py
4 In this case the camera isn’t moving so a simple translateZ() by a fixed small

amount would have sufficed, however the technique used in the example can be used
more generally.

5 https://github.com/paddywwoof/pi3d_book/blob/master/programs/linepoint03.py

52 Chapter 10. Lines, Points and Merging

https://github.com/paddywwoof/pi3d_book/blob/master/programs/linepoint02.py
https://github.com/paddywwoof/pi3d_book/blob/master/programs/linepoint03.py

3D Graphics with pi3d, Release 1.0

vertices of a Points Shape and that the z location is being used to
represent the size of each point (see lines 52 to 54, you can also
see that the color is defined using the normal x component on line
61). Each frame the vertices move according to “physics” and the
locations are revised using the Buffer.re_init() method (line 84) and
the points are drawn using a special shader. Now look at the shaders
pi3d_demos/shaders/uv_sprite.* (.vs and .fs)

In the vertex shader you will see that it simply sets gl_Position in
the normal way using the projection matrix (as neither the Shape nor
the Camera move, this matrix multiplication could have been elimi-
nated by using a different basis for the vertex coordinates). And the
gl_PointSize is set to be inversely proportional to z depth. In the frag-
ment shader a Texture2D lookup is performed on the texture loaded in
SpriteBalls.py, however rather than using a 2D vector calcualted from
the texture coordinates (which are not passed to the shader when using
the Points class anyway), it uses gl_PointCoord, a variable available
in the fragment shader while drawing points. To get an idea of the in-
creased speed of this type of rendering try increasing MAX_BALLS
to several thousand as used for the image above.

10.2. Points using texture mapping 53

CHAPTER

ELEVEN

STRINGS

pi3d has three mechanisms for producing Text:

The first one is the pi3d.String class which inherits from pi3d.Shape
in the same way as the “standard” shapes such as Cuboid, Sphere,
Sprite, Torus etc. However as it is initialised it constructs its vertices
and texture coordinates to map rectangles from a special Texture -
pi3d.Font or pi3d.Pngfont. Each of these classes contain an image of
all the letters required and a dictionary to look up the location, width
and height of each letter. pi3d.Font is generally more useful as it is
generated “on the fly” from a TrueType font but it requires certain
functionality from the Python Imaging Library, and where that might
not be available (I couldn’t get it to work on Android), pi3d.Pngfont
can be used (but it’s restricted to the letters on the special png image
files)

The second mechanism is the pi3d.FixedString class which inherits
from pi3d.Texture, a bit like the pi3d.Font class above but rather than
containing the full alphabet it uses a string passed to the construc-
tor. This means that the string can then be drawn using only four
vertices and two triangles rather than that number for every letter re-
quired by pi3d.String, so it can be quite a bit faster on some platforms
if there’s lots of text. Another of advantage of FixedString is that
PIL 1 and numpy can be used to provide filters: BUMP will gener-
ate a normal map, EMBOSS, CONTOUR, BLUR and SMOOTH do

1 Python Image Library - generally Pillow https://pypi.python.org/pypi/Pillow

54

https://pypi.python.org/pypi/Pillow

3D Graphics with pi3d, Release 1.0

what you would expect. The FixedString class can be used wher-
ever a pi3d.Texture would be used, but it also contains an instance of
pi3d.Sprite (called pi3d.FixedString.sprite) which has width, height,
umult and vmult to match the dimensions of the string to the Texture.
(Look back at the chapter Shapes, Buffers and Display if
you don’t remember umult and vmult!)

However for varying text (such as
a score, or timer) the overhead of
creating a new PIL image and con-
verting it to a Texture every frame
would be large and in this case
it is better to use either use the
pi3d.String.quick_change() method
or the pi3d.PointText class. This
latter method has only been added
to pi3d as of v2.8 it is rather com-
plicated but very fast and flexi-
ble, if you need this then study
pi3d_demos/StringMulti.py. Both
the approaches have various restrictions as described in the documen-
tation, the most significant of which is that the string can’t be changed
to a longer length than its original scope (of course it should be padded
by spaces initially for this eventuality).

Have a play with the three examples strings01.py, strings02.py and
strings03.py 2 There are one or two quirks to watch out for: if
you use a 2D Camera (orthographic - argument is_3d=False) with a
pi3d.String object, then you also need to set the argument in the String
constructor to is_3d=False. Also the font passed to pi3d.String con-
structor is a pi3d.Font object but the font passed to pi3d.FixedString
is the path to a TrueType font as a string.

With the rotating text you will have noticed the strange effect of the
mipmaps which are a series of lower resolution texture maps that au-
tomatically get swapped depending on the z depth of the fragment
being rendered. The mipmaps are generated at the time of Texture

2 https://github.com/paddywwoof/pi3d_book/blob/master/programs/strings01.py

55

https://github.com/paddywwoof/pi3d_book/blob/master/programs/strings01.py

3D Graphics with pi3d, Release 1.0

creation and are generally a good thing so the default argument to
Texture is mipmap=True.

Check out the use of strings in various of the pi3d_demos.

56 Chapter 11. Strings

CHAPTER

TWELVE

OFF-SCREEN TEXTURES (AND OTHER
MORE COMPLICATED THINGS)

The normal result of drawing ob-
jects with pi3d is for them to ap-
pear on the display. However there
can be situations where it might be
useful to capture the output and do
other processing on it before post-
ing it to the screen. Reasons in-
clude: blurring, distorting, edge de-
tection and any number of artis-
tic post-processing effect but also
collision detection, shadow casting
and stereo imaging.

In pi3d there is a class OffScreenTexture that inherits from Texture. It
isn’t really intended to be used directly but other classes inherit from
it: Clashtest, Defocus, PostProcess, ShadowCaster and StereoCam.
Each of these has a similar outline work flow each frame.

1. Start the off-screen capture

2. Draw the objects in the scene, possibly with a special shader as
with Clashtest or ShadowCaster but otherwise just normally i.e.
PostProcess or StereoCam

3. Stop the off-screen capture

57

3D Graphics with pi3d, Release 1.0

4. Process the image. Sometimes using a special shader, some-
times drawing the off-screen texture to a Sprite with a normal
uv_flat shader.

Because offscreen textures can be
used for a wide range of reasons the
details of each one will vary greatly.
However the Post-processing appli-
cation is probably the most general
so this is a good one to look at.

Open pi3d_demos/Post.py and, af-
ter running it to see what it does,
try commenting out the lines 67, 73
and 78. This will basically cut out
the capturing to off-screen texture
and subsequent post processing so
you can see what is being captured.

For the moment ignore the fancy swirling texture on the Spheres, this
is a separate complication that I will explain later. If you look inside
the pi3d/util/PostProcess.py file you will see that although it can be
called with all its arguments defaulting to values, in this instance we
are passing a Camera instance and setting the divide argument. The
reason for this is explained in the docstrings: there is a facility to only
capture part of the screen to generate a lower resolution off screen tex-
ture which speeds up the whole rendering process quite a bit. In order
to effect this low resolution capture the camera has to be defined with
a wider field of view which is done on line 28 of pi3d_demos/Post.py
(scale is a tidier alternative to defining a whole lens spec with larger
fov) And the camera is passed to the PostProcess constructor in line
35 along with the same scaling factor, however you will notice that
the camera instance is set to self.viewcam in line 51 which is then
not used! The same camera is specified for myshape and mysprite on
lines 42 and 48. The reason for all this camera specification is the de-
fault instance behaviour of pi3d - which will make the default camera
from the first one to be created and, as a 2D camera is created in the
__init__() function of PostProcess, care has to be taken to ensure
that this doesn’t become the default instance by accident.

58 Chapter 12. Off-screen textures (and other more
complicated things)

3D Graphics with pi3d, Release 1.0

In PostProcess line 72 you can see the OffScreenTexture._start()
method call and some code to just render part of the screen using
the glScissor function. On line 85 OffScreenTexture._end() stops the
screen capture and draw() renders a simple subdivided quad self.sprite
using self.shader, self.tex_list and self.camera. On line 63 you will
see that self.tex_list[0] points to the PostProcess instance itself which
inherits the behaviour of pi3d.Texture via pi3d.OffScreenTexture.
There are a couple of things that make this even harder to follow:
1. on line 64 and 65 there is a facility to add additional textures
(such as bump and relfection) for use by the shader, 2. on lines 99
to 101 there is a facility to modify the unif array of self.sprite. The
pi3d_demos/Post.py example doesn’t use any additional textures (al-
though some of the shaders in pi3d_demos/FilterDemo.py do) but on
line 78 of pi3d_demos/Post.py you will see that post.draw() is passed
a value for unif[48] that very slowly increases from 2.0 to 6.999, after
which it resets to 2.0.

Now if you look in pi3d/shader/post_base.fs - the fragment shader
- you will see on line 27 that use seems to be made of unif[16][0]
(remember that the “flat” c_types.float(60) array in python becomes
vec3[20] in GLSL so unif[48] in python is unif[16][0] in the shader.)
But what exactly is it doing? Well the vertex shader is very simple,
essentially just setting the vertex location in gl_Position and flipping
the image top to bottom as it sets the uniform variable texcoordout.
In the fragment shader, lines 26 to 29 loop nine times to increment
the eventual pixel RGBA value texc. Each loop looks up the value
from the PostProcess texture using Texture2D with a slightly offset
coordinate dx[] and dy[] and a weighting factor f[]. unif[16][0] is
used as a multiplier for the dx[] and dy[] values in order to sample
the “convolution” 1 over a wider area. If you watch the demo for long
enough you will see the edges gradually get wider then suddenly jump
back when the value in unif[48] wraps back to 2.0.

1 https://en.wikipedia.org/wiki/Kernel_(image_processing)

59

https://en.wikipedia.org/wiki/Kernel_(image_processing

3D Graphics with pi3d, Release 1.0

12.1 Other Shaders

The “star” shader used to texture the Spheres in pi3d_demos/Post.py
above is another example of how you can use the GPU to do all kinds
of fancy things. Look at the source code, which was contributed by
Peter Hess based on www.iquilezles.org shadertoy demos. The shader
works by converting the texture coordinates to a polar basis in lines
25 and 26, then applying factors that depend on an incrementing value
“time” and trigonometric transformations, then using the values to
lookup and modify the RGBA values from the texture sampler.

It’s quite fun to experiment with different formulas and values in
shaders but, if you do, you will probably have to put your shaders in a
subdirectory of your working directory (as with pi3d_demos/shaders)
and you will probably have to “expand” the #include ... syntax
used in the main pi3d shaders as the process of figuring out the path to
import from might defeat the Shader loader! Shaders are difficult to
debug as the only info is graphical output to the screen but a general
rule is to start from something that works and change a very small
part before testing. That way you will stand more chance of figuring
out what broke it!

12.2 Video Textures

By using pi3d.Texture.update_ndarray() to update the Texture with
a numpy array it’s possible to change the image relatively quickly.
Obviously this depends on the size of the image and the power
of the cpu but even on the Raspberry Pi it can give a reasonable
frame rate using ffmpeg as the video decoder. Have a look at the
pi3d_demos/VideoWalk.py

On line 39 image is defined as a numpy ndarray with dimensions the
same as each video frame (N.B. C type arrays are rows (height) then
cols (width) then RGB bytes). This array is then filled in a Thread
running in the function pipe_thread() defined on line 41 and started
just after that. In pipe_thread ffmpeg is run as a subprocess and the

60 Chapter 12. Off-screen textures (and other more
complicated things)

3D Graphics with pi3d, Release 1.0

output piped into the image array (line 48). There is a slightly messy
variable length sleep on line 58 to keep the video frame rate regular,
and a flag is set so that the main Thread which has the pi3d frame
loop can refresh the Texture after each video frame has been copied
into the numpy array see line 168.

12.3 Conclusion

Hopefully you’ve arrived here, at the end of the book, with a bet-
ter understanding of the way that pi3d uses the enormous processing
power of the GPU through the OpenGL ES 2.0 standard. More im-
portantly I hope you have a grasp of the architecture and terminology
to help you search for and understand the answers to any problems
you (inevitably) encounter as you start to make your own programs.

If you started reading this book because you had some specific ideas
you wanted to implement then you will be tempted to launch straight
into an ambitious project. I have to say that is an excellent idea. How-
ever, before you do any coding draw up a plan of action that identifies
the smallest, simplest elements first then write short programs to help
you get to grips with the problems one at a time at a manageable scale.
This approach has the advantage of giving you encouraging feedback
early on, it forces you to break the problem down into its functional
elements and you build up a set of test programs to help you verify
later changes to your project code.

Finally, don’t give up too quickly when you run into trouble,
but don’t struggle on alone for too long either. There is al-
ways help available on-line. Try www.raspberrypi.org/forums/,
groups.google.com/forum/ or stackoverflow.com to name but three.

12.3. Conclusion 61

	Introduction
	Target Audience
	The Structure and how to use this book
	Installation

	3D Graphics Explanation
	Communication between python and the GPU
	Sequence of events

	Vectors and Matrices
	Vectors
	Matrices
	Illustrations

	Shapes, Buffers and Display
	Shape
	Buffer
	Display

	Textures, Lights and Shaders
	Textures
	Lights
	Shaders
	A Final look at Textures

	Cameras, 2D projection and Sprites
	Models
	Constructing a Shape from scratch
	User input and Environment Utilities
	Keyboard
	Mouse
	Events
	3D Backgrounds
	ElevationMap

	Lines, Points and Merging
	set_line_width and set_point_size
	Points using texture mapping

	Strings
	Off-screen textures (and other more complicated things)
	Other Shaders
	Video Textures
	Conclusion

